The Mass Loss Rates of O Stars Determined from FUSE Observations

D. Massa (SGT, Inc), A.W. Fullerton (UVic/STScI), R.K.Prinja (UCL) & G. Sonneborn (GSFC)

The Importance of \dot{M}

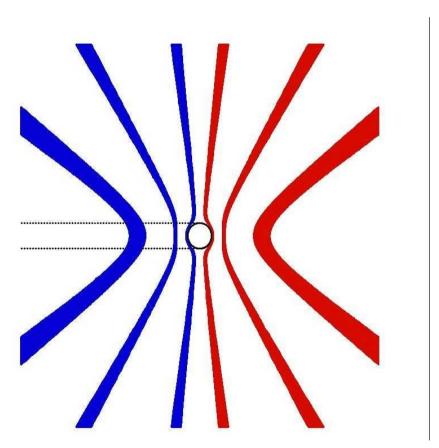
- 1. Chemical Evolution of the Galaxy
- 2. Dynamics of the ISM
- 3. Deriving Ages and IMFs from HRDs and integrated spectra

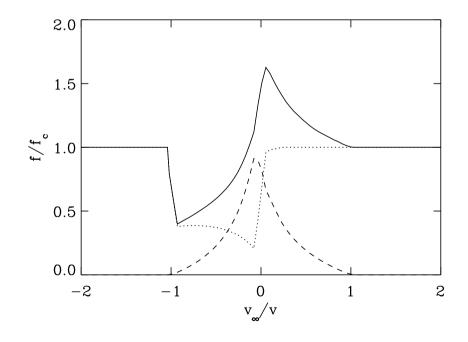
Measuring \dot{M}

Three ways (All assume a homogeneous, spherically symmetric wind with a monotonic velocity law).

In a perfect world, they would all agree.

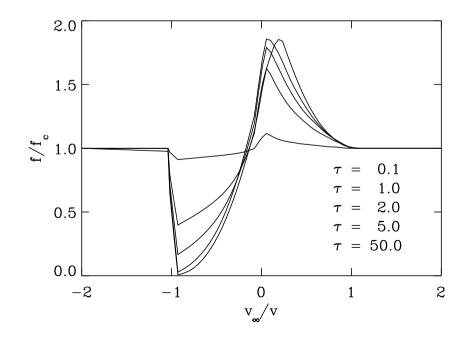
1. Continuum excesses from free-free emission

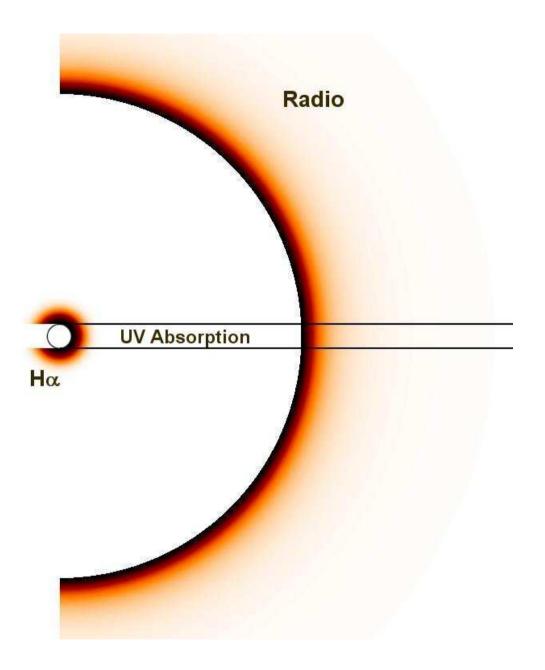

- Samples the outer wind (radius depends on wavelength)
- Depends on n_e^2
- Radio wavelengths are considered the "cleanest" because
 - ▶ Massive winds become thick at large radii ($\gtrsim 10R_*$) where v = Const, making $\rho_{wind} \sim \dot{M}/r^2$, independent of v(r).
 - ▶ No photospheric correction is needed.
- However,
 - ▶ Radio can be non-thermal, requiring fluxes at multiple λ s.
 - ▶ Only detectable for massive winds of nearby stars.


2. $H\alpha$

- Samples the inner wind.
- Depends on n_e^2
- Easy to observe.
- However, interpreting the $H\alpha$ profile:
 - \blacktriangleright Depends on b_3 in the wind, which depends on:
 - the photospheric radiation field
 - the diffuse radiation field of the wind
 - the wind velocity law in the acceleration region
 - ightharpoonup Requires a "photospheric" H α profile.
 - ▶ Furthermore, $W_{\lambda}(H\alpha)$ can be strongly variable.
- Nevertheless, relatively sophisticated models for $H\alpha$ formation give reasonable agreement between radio and $H\alpha$ \dot{M} s.

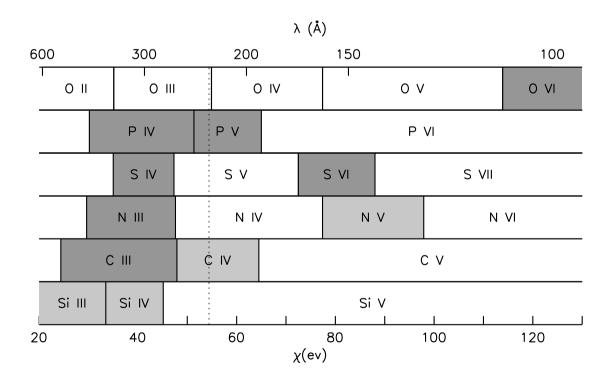
3. UV resonance lines


- Samples the entire wind.
- Depends on N_i
- ullet Determines $au_{rad} \sim \dot{M} q A_E$

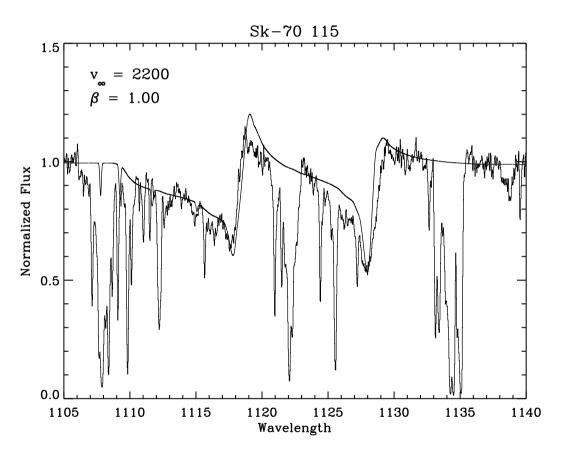


3. UV resonance lines

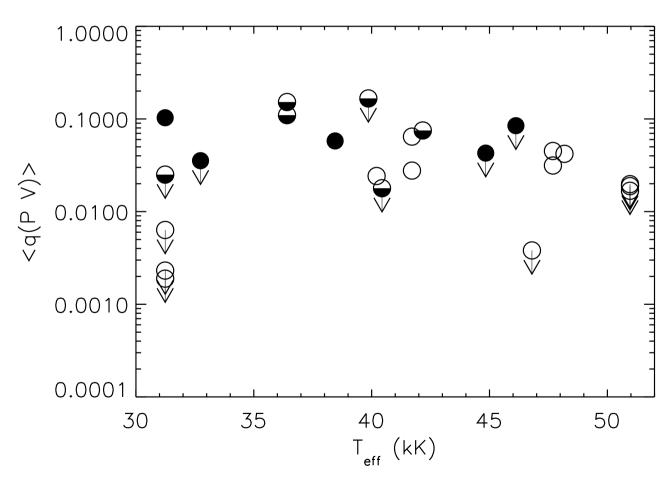
- Samples the entire wind.
- Depends on N_i
- ullet Determines $au_{rad} \sim \dot{M} q A_E$
- However,
 - ▶ Need $\tau_{rad} \leq 5$ for accurate measurements.
 - ▶ Need dominant ions $(q \sim 1)$ to estimate \dot{M} directly.
 - ▶ But $\tau_{rad} \gg 5$ for dominant ions of abundant elements in the winds detected in the radio or with reliable H α \dot{M} s.



Cartoon showing where the radio free-free emission, $H\alpha$ emission and UV wind line absorption are formed.

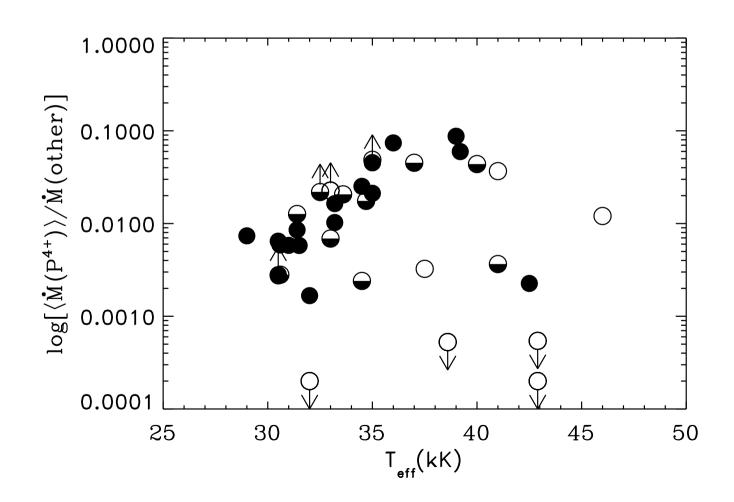

FUSE and P V

- ▶ FUSE gives access to P $\vee \lambda\lambda 1118, 1128$.
- ▶ P v is a surrogate for C iv and unaffected by processing.
- ▶ Both expected to have $q \sim 1$ in mid-O star winds.
- ▶ For scaled solar abundances, $\tau_{rad}(C \text{ IV})/\tau_{rad}(P \text{ V}) = 661$.
- ▶ Detect P v if $\tau_{rad}(C \text{ iv}) \gtrsim 50 \text{stars with radio detections.}$



P v in the LMC

- \blacktriangleright First large P v study using FUSE analyzed 25 LMC O stars (Massa, Fullerton, Sonneborn & Hutchings 2003)
- $ightharpoonup v_{\infty}$ and eta are determined from other, saturated lines.


- ▶ Using predicted \dot{M} s and $A_E(LMC) = 0.6A_E(MW)$, we found:
- 1. $q(P v) \leq 0.15$ for all the stars in the sample.
- 2. This result implies a factor of 7 or more discrepancy between expected and observed $\dot{M}{\rm s}.$

- ► Three possible explanations:
- 1. LMC P abundance scales differently from other elements.
- 2. Theoretical \dot{M} s are incorrect for the LMC.
- 3. Real winds violate assumptions in SEI model.

P v in the Galaxy

- ▶ Solar, Stellar and ISM P abundances are secure and agree.
- ▶ Fullerton, Massa & Prinja (2006) analyzed P \vee in Copernicus, Orfeus and FUSE data for 40 stars with radio and/or H α \dot{M} estimates.

Conclusions

- ightharpoonup MW and LMC results are identical \Rightarrow theory is consistent.
- ▶ P abundance is not responsible for the small LMC q(P v).
- ▶ Root of the problem is probably:
 - Deviations from spherical symmetry.
 - Large scale clumping/porosity (structure).
- Large scale clumping will also affect the radio and $H\alpha$ $\dot{M}s$ and their X-ray fluxes.
- ▶ The good news: each measure of \dot{M} is affected differently.